Natural cellulose fiber as substrate for supercapacitor.
نویسندگان
چکیده
Cellulose fibers with porous structure and electrolyte absorption properties are considered to be a good potential substrate for the deposition of energy material for energy storage devices. Unlike traditional substrates, such as gold or stainless steel, paper prepared from cellulose fibers in this study not only functions as a substrate with large surface area but also acts as an interior electrolyte reservoir, where electrolyte can be absorbed much in the cellulose fibers and is ready to diffuse into an energy storage material. We demonstrated the value of this internal electrolyte reservoir by comparing a series of hierarchical hybrid supercapacitor electrodes based on homemade cellulose paper or polyester textile integrated with carbon nanotubes (CNTs) by simple solution dip and electrodeposited with MnO2. Atomic layer deposition of Al2O3 onto the fiber surface was used to limit electrolyte absorption into the fibers for comparison. Configurations designed with different numbers of ion diffusion pathways were compared to show that cellulose fibers in paper can act as a good interior electrolyte reservoir and provide an effective pathway for ion transport facilitation. Further optimization using an additional CNT coating resulted in an electrode of paper/CNTs/MnO2/CNTs, which has dual ion diffusion and electron transfer pathways and demonstrated superior supercapacitive performance. This paper highlights the merits of the mesoporous cellulose fibers as substrates for supercapacitor electrodes, in which the water-swelling effect of the cellulose fibers can absorb electrolyte, and the mesoporous internal structure of the fibers can provide channels for ions to diffuse to the electrochemical energy storage materials.
منابع مشابه
Synthesis and Electrochemical Analysis of Algae Cellulose-Polypyrrole-Graphene Nanocomposite for Supercapacitor Electrode.
A novel nanocomposite has been developed using extracted cellulose from marine algae coated with conductive polypyrrole and graphene nanoplateletes. The nanocomposite fabricated via in situ polymerization was used as an electrode for a supercapacitor device. The nanocomposite material has been electrochemically characterized using cyclic voltammetry to test its potential to super-capacitive beh...
متن کاملDissertation Title : ELECTROCHEMICAL ANALYSIS ON THE CHARGE TRANSPORT PROPERTIES OF HETEROGENEOUS SUPERCAPACITOR ELECTRODE
The design and exploration of heterogeneous materials for energy storage system are investigated here. The charge transport property of the electrode materials is tuned through different architectures and chemical compositions. This dissertation describes the motivation, design, and fabrication of heterogeneous materials grown on cellulose fibers or as free standing ordered nanoarrays with AAO ...
متن کاملCarbon black-intercalated reduced graphene oxide electrode with graphene oxide separator for high-performance supercapacitor
We present a general study on a high performance supercapacitor based on intercalated reduced graphene oxide with carbon black nanoparticles. Graphene oxide sheets were synthesized by oxidation and exfoliation of natural graphite and were reduced using hydroiodic acid in the presence of carbon black nanoparticles. Graphene paper was fabricated by one-step procedure via simultaneous reducing and...
متن کاملSupercapacitance from Cellulose and Carbon Nanotube Nanocomposite Fibers
Multiwalled carbon nanotube (MWNT)/cellulose composite nanofibers have been prepared by electrospinning a MWNT/cellulose acetate blend solution followed by deacetylation. These composite nanofibers were then used as precursors for carbon nanofibers (CNFs). The effect of nanotubes on the stabilization of the precursor and microstructure of the resultant CNFs were investigated using thermogravime...
متن کاملEffect of non-fiber carbohydrates on in vitro first order kinetics disappearance of cellulose
An in vitro experiment was conducted to determine the effect of supplemental non-fiber carbohydrate(NFC) on the disappearance kinetics of cellulose (Ce) by mixed ruminal microorganisms. Non-supplementedor NFC supplemented cellulose (467 mg NFC/g cellulose as sucrose (CeSu) or starch (CeSt) or a 1:1 mixtureof sucrose + starch (CeSuSt)) were incubated for 24, 48, and 96 h at 39°C. After each incu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2013